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Abstract

We examine the e�ect of social trust on a network in which agents communi-

cate with each other and information sources, changing their opinion with some

probability. Agents whose peers are more likely to spread misinformation are

consequently less trusting than agents whose neighbours are more informed, and

therefore change their views with less probability. When echo chambers are strong,

weakening them results in there being more interaction between high and low so-

cial trust agents, increasing the spread of misinformation. When echo chambers

are weak, however, weakening them further reduces the di�erences in social trust,

decreasing the asymmetries in communication and hence the probability agents

are misinformed. As a result of the non-linear relationship between the strength of
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echo chambers and the spread of misinformation, optimal interventions in network

structure depend on why agents form links in the �rst place.

KEYWORDS: communication, networks, network design, misinformation, platforms.

JEL classi�cation: D82, D83, D85.

1 Introduction

It is well-documented that social media platforms, like Facebook, Reddit and Twit-

ter, are hotbeds of misinformation on matters ranging from politicians (Allcott and

Gentzkow, 2017), scienti�c discoveries (Naeem et al, 2020) and celebrity news (Arnold

et al, 2019). One aspect of this multi-faceted problem that has been well studied is the

role of echo chambers in the propagation of misinformation (see, for example, Acemoglu,

Ozdaglar and Siderius, 2021). Agents who believe misinformation are more likely to be

connected to others who also believe it, and so misinformation is able to propagate, at

least amongst a subset of the population. Reducing the prevalence of echo chambers is

therefore often seen as a key component of the battle against misinformation.

Here, I consider the other side of breaking echo chambers: people who are correctly

informed are exposed to falsehoods when doing so. On its face, this might not be a

concern - communication on social networks is commonly bidirectional, and, hence, at

the very least, there is less polarisation when such communication occurs. However,

when some agents are less trusting than their peers, bidirectional communication is not

symmetric. I examine the e�ect this asymmetry has on the e�ectiveness of reducing

the prevalence of echo chambers on social networks.

Social trust and its e�ect on communication has become of increasing interest to

social scientists (Jennings and Stroud, 2021; Ognyanova, 2021; Hopp et al, 2020 and
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Kwon and Barone, 2020). Here, we de�ne social trust as the extent to which a person

believes that the speech or actions of others are true or motivated by good intentions

(Gambetta, 1988). Individuals with low social trust are thus less likely to be convinced

by the opinions of others than those with high levels of social trust.

Recent research shows that there is a link between social trust and misinformation

- speci�cally, followers and sharers of misinformative sources and content are more

likely to have low levels of trust in both other citizens and the mainstream media

(see Zimmerman and Kohring, 2020 and Hopp et al, 2020). Experimental evidence

suggests that people who believe misinformation are less likely to be convinced out of

their opinion even after being shown the truth (Rhodes, 2022) Furthermore, so-called

countermedia information sources, who frequently purvey misinformation, foster and

a support negative worldview in which most people should not be trusted as they are

either ignorant or actively nefarious (Rojas, 2010 and Allcott & Gentzkow, 2017).

There is empirical evidence, then, that those who believe misinformation also less

likely to trust their peers, and therefore they are less likely to be convinced out of

their opinions. We construct a model in which those who have misinformed peers are,

as a consequence, less likely to trust their peers. We then examine the e�ect that

this endogenous process of social formation a�ects the spread of misinformation on a

network.

In the model here, agents interact with each other and information sources on a

social network. Users can either be informed or misinformed. Users are connected

both with each other and information sources; one type (�mainstream� information

sources) which espouses the informed opinion, the other, �countermedia� information

sources, espouses the misinformed opinion. Users exhibit both homophily, in the sense

that they prefer to connect with users of the with the same social characteristics and
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worldview, and bias, in that users with a conspiratorial worldview prefer to connect

to countermedia sources and high social trust users prefer to connect to mainstream

sources.1

The agents communicate on a network that is shaped by a platform's algorithm,

which suggests which users an agent should follow, taking into account users' preference

for homophily and biases. The platform wishes to maximise the degree of the network,

and hence chooses an algorithm that reinforces these preferences. At the optimum, this

algorithm generates a stochastic block model, with types distinguished by both social

characteristics and their worldview.

Agents communicate on two separate issues. On the �rst issue, they communicate,

eventually �nding out the truth. This allows them to observe the probability that

their neighbours spread misinformation, which �xes their level of social trust: the more

misinformative their peers, the less trustful they are. Agents whose neighbours are more

likely to be misinformed thus are less likely to update their views after an interaction

with their peers.

Agents then communicate about the second issue. We characterise the distribution

of opinions on the issue as the number of agents tends to in�nity. Communication

between agents in this model is therefore endogenously asymmetric: low social trust

agents, who are more likely to observe and therefore believe misinformation, are less

convincible than their peers.

This feature of the model is crucial to the main results. When echo chambers are

strong in this context, they protect high social trust users from being convinced by their

misinformed and mistrustful peers, and hence strengthening them further decreases the

1Of course, there is likely to be a correlation between some social characteristics and worldview.
Our analysis is agnostic as to the extent and direction of this link, as none of the results depend on
any particular relationship between these two variables.
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amount of misinformation on the platform. However, when echo chambers are weak,

weakening them further reduces the di�erence in social trust levels, which also serves

to decrease misinformation.

Hence, echo chambers have a non-linear e�ect, with stronger echo chambers being

most e�ective in combatting misinformation in contexts where worldview is the domi-

nant determinant of connection patterns (on networks such as Twitter), while weaker

echo chambers are preferred when agents most value interacting with those who are

socially similar to them (on friendship networks, like Facebook). Strong echo chambers

also increase polarisation, leading to their being a trade-o� for a social planner wishing

to locally reduce polarisation and misinformation propagation on platforms with high

levels of ideological segregation.

We then turn to the question of interventions in the network to reduce the prevalence

of misinformation. If a social planner incentivises a platform to reduce misinformation

by intervening in the structure of the network (a �structural intervention�), then when

echo chambers are strong they optimally intervene to reduce the extent to which the

most isolated individuals who have a mainstream worldview (i.e. those who are least

likely to observe misinformation) interact with the conspiratorial individuals who are

most likely to observe misinformation. When echo chambers are weak however, the

platform prefers to increase even further the interaction between that the mainstream

and conspiratorial groups who communicate the most across the ideological divide.

Reducing the extent to which users observe countermedia sources is also a way

of reducing misinformation propagation. We characterise an in�uence measure that

captures the optimal users to target with such an intervention, �nding that having low

social trust results in relatively large amounts of in�uence, as does being well-connected

in the network.

5



Literature review

Social trust is a well-contested term within the sociological literature (see Verducci and

Schröer, 2010 for an overview), but broadly can be thought of as being the belief that

other citizens (as opposed to political, social or media elites) will, for one reason or

another, act in a way that is, at best, to our bene�t, and at worse not to our detriment

(see Gambetta, 1988 and Warren, 1999 as examples). Of particular interest from our

perspective is Gambetta's (1988) observation that trust �is a particular level of the

subjective probability with which an agent assesses that another agent or group of

agents will perform a particular action�: the socially mistrustful agents in our model

are less likely to believe their peers than the socially trustful ones.

Our analysis �ts into a growing literature on the role of social trust as a driver of

polarisation and misinformation on social networks and in public life more generally.

People who are socially mistrustful are more likely to vote for a populist political

candidate (Hooghe and Dassonneville, 2018), spread countermedia content (Hopp et

al, 2020), were less likely to socially distance during the Covid-19 pandemic (Woelfert

and Kunst, 2020) and are more likely to believe conspiracy theories in general (Pierre,

2020).

Relatedly, a number of empirical papers have highlighted how exposure to opposing

viewpoints may have di�erential e�ects on di�erent users. For example, Bail et al

(2018) �nd that exposure to a Twitter bot with an opposing viewpoint actually increased

political polarisation amongst ideologically extreme right-wing subjects. These subjects

are also less likely to reduce their belief in false stories that support their political

position than their left-wing counterparts according to Rhodes (2022).

A number of economic theory papers have tackled the question of fake news, which
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can be broadly put into two categories: Bayesian agent approaches, in which fully ra-

tional agents choose whether to share a piece of content, often with the input of a

benevolent (Candogan and Drakopoulos, 2020 and Papanastasiou, 2020) or manipula-

tive (Chen and Papanastasiou, 2021 and Keppo et al, 2019) platform, and bounded

rationality or naive learning approaches (Nguyen et al., 2012, Toernberg, 2018 and

Mostagir, Ozdaglar, and Siderius 2020) in which agents update their opinions heuristi-

cally on the basis of the opinion's of their neighbours.

Within the former strand of the literature, Acemoglu, Ozdagalar and Siderius (2021)

is the closest to this paper. There, echo chambers generate an incentive to share misin-

formation, as it is less likely to be identi�ed as such, with the platform exacerbating this

issue by selectively displaying misinformation to create a �lter bubble, which contrasts

with our �nding that echo chambers have the potential to insulate high social trust

users from observing misinformation in some cases.

Our approach �ts more closely with those employing boundedly rational agents

and the naive learning on networks literature more broadly, which largely employs a

DeGroot-based social learning approach (see Golub and Jackson, 2010). Speci�cally, we

examine the case where there are agents who are naive learners who are in�uenced by

users who do not update their opinion, namely information sources. Yildiz et al (2013),

Vohra (2021) and Sadler (2022) all employ such agents in a naive learning framework,

with the latter also considering the limits of the distribution of opinions on a stochastic

block model. We examine the e�ect the interaction between heterogeneous levels of

social trust and network structure has on communication in this framework.

Both Dandekar et al. (2013) and Anunrojwong et al (2020) utilise a naive learning

framework in the context of misinformation, with the former examining the case where

agents are more likely to believe evidence which supports their current position, leading
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to the possibility of polarisation under homophily, while the latter analyses the e�ect

of users who are more likely to believe evidence which supports their current position,

leading to the possibility of polarisation under homophily. In both cases, communication

is symmetric.

2 Communication

The model is in two parts: a network formation stage, in which users choose who they

are connected with, which generates a network G, and a communicate stage, in which

agents communicate on G. We consider the latter process �rst, before examining the

network formation process in Section 3.

Communication and social trust

We consider agents interacting on a social network. Agents take two forms: �information

sources� and �regular agents�. Agents are linked by a graph G. Let S denote the set

of information sources and R denote the set of regular agents, with |S| = mS and

|R| = mR. If i, j ∈ R then if there exists an edge ij ∈ G, it is undirected, while if

i ∈ R and j ∈ S, ij is directed (there are assumed to be no links between information

sources).

Suppose that there are n agents (i.e. both regular agents and information sources)

and time is discrete. We consider communication between these agents which relates

to an issue on which no agent knows the truth, but every agent has an opinion on some

issue, I. Speci�cally, in period r, each agent, i, holds an opinion on issue I, vIir ∈ {0, 1},

where 1 is an informed opinion (i.e. it aligns with the truth) and 0 is a misinformed

opinion. In each period, a single regular agent is chosen uniformly at random. The
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regular agent, i, observes a single agent, j, chosen uniformly at random from their

neighbourhood (i.e. any agent j where ij ∈ G).

Information sources are either �mainstream� or �countermedia�. If i is a mainstream

information source, they have opinion vIir = 1 for all r, while if they are countermedia

then vIir = 0. Let S0 and S1 be the set of countermedia and mainstream sources

respectively. We assume that S0, S1 ̸= ∅.

If i observes j ∈ S (i.e. an information source) in period r then i adopts j's opinion

with probability 1 in r + 1.2

Meanwhile, if j ∈ R then the probability that i adopts j's opinion depends on

i's social trust. Speci�cally, let δi denote i's social trust level, which will ultimately

endogenously determined in equilibrium, and δ be the n× 1 vector of social trusts. If

the link ij is realised in period r and j ∈ R, then an agent i adopts j's opinion in r+1

with probability δi: that is, agents with low social trust are less likely to adopt the

opinion of an agent they observe with less probability than a high social trust agent is.

The opinion forming process then forms a Markov chain. De�ne vS as the vector of

opinions of information sources, and vI
t the vector of opinions of regular agents at time

t on issue I. The following statement holds:

Proposition 1. Suppose G is connected and S is non-empty. Then, the Markov chain

vI
t (G) has a unique steady-state distribution.

This result is similar to the one found in Yildiz et al (2013), but holds for the more

general case where agents are not convinced by the agent they observe with probability

1. We exploit the result in Proposition 1 throughout to examine how network structure

a�ects the steady-state distribution of opinions.

2We adopt this assumption to focus our attention on interactions between regular agents. Agents
may well di�er in the extent to which they are convinced by information sources (and indeed, this may
also depend on the type of information source), and this could be incorporated into the model easily.

9



An example of the communication process with exogenous social

trust

To �x ideas about our analysis, we consider a stylised example in which social trust

is exogenous. Suppose that there are three regular agents, A, B and C, with the �rst

two agents having a social trust level of 0.8, the latter having a social trust level of 0.2,

and two information sources, one mainstream and one countermedia. We consider two

network structures, shown in Figure 1 below.

Figure 1: Two realised communication networks, with A, B and C representing regular
agents.

In network structure 1, on the left-hand side of Figure 1, where A,B and C are con-

nected, the unique steady-state distribution is such that agents A,B and C believe

misinformation with probabilities 0.36, 0.36 and 0.81 respectively, and hence the prob-

ability that a random agent believes misinformation is 0.51. Compare this result to

network structure 2. In that case, A,B and C believe misinformation with probabil-

ities 0.14, 0.32 and 0.87 respectively, and so the probability a random agent believes

misinformation is now 0.45. Reducing the extent to which high social trust types are
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connected to low social trust types reduces the propagation of misinformation, the re-

sult of the fact that communication between agents A and C (who are connected in

network structure 1 but not 2) is asymmetric, such that A is convinced by C more often

than the reverse.

Compare this result to the case every agent has a social trust level of 1. Under

network structure 1 and 2, agents A,B and C believe misinformation with probabilities

1
4
and 1

8
, 1

4
and 1

4
, and 1

2
and 5

8
respectively. In both cases, however, a random agent

believes misinformation with probability 1
3
. Hence, in the case where there is no social

mistrust, while the probability that di�erent agents believe misinformation is a�ected

by network structure (and therefore polarisation is too), average public opinion is not.

These observations will be formalised by our model, along with a notion of endogenous

social trust.

Social trust formation

As mentioned above, we will be considering the case where social trust levels are en-

dogenously determined by the structure of the network. We assume that while agents

are persistently biased towards the information sources they observe (believing them

with probability 1), they are able to observe the likelihood that their neighbours, on

average, spread misinformation.

There will be two stages of communication in the model. First, agents communicate

about an issue I1, each having some common social trust level, which we normalise such

that δi = 1 for all i. After a many-period communication process, agents will learn the

truth about I1, allowing them to change their belief about the extent to which their

neighbours, on average, can be trusted, in a manner we describe below.3 Agents then

3We are, then, implicitly assuming that agents are not sophisticated enough to observe which of
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communicate on a new issue, I2 in perpetuity, without ever learning the truth. We will

ultimately be interested in the distribution of beliefs regarding issue I2.
4

Speci�cally, we will assume an agent i's social trust level while communicating about

I2 on a graph G will be δi =
∑

j
gij

(
∑

j gij)
E[ṽj|G, δ = 1] ∀i. That is, the probability that

i changes their opinion after communicating with a regular agent, j, about issue I2

depends on the probability that all of i's regular agent neighbours had an opinion

re�ecting the truth during communication about I1.

3 Network formation

Having outlined the communication process, we now consider network formation. The

network formation process takes place in two stages: an awareness stage, in which a

platform partially determines the extent to which agents are aware of each other; and

a connection stage, in which agents choose to connect with agents of whom they are

aware. We consider these two stages in reverse order.

The connection stage

Throughout, we will assume that a regular agent, i is associated with both a world-

view and social characteristics. Suppose that ϱi ∈ {ϱc, ϱm} (conspiratorial and

mainstream) denotes the two possible worldviews. Let θi ∈ {θ1, ..., θy} = Θ be a mea-

sure which captures social characteristics (e.g. location, schooling, socioeconomic status

their friends are more reliable, forming instead a general impression of the veracity of the information
passed onto them by their regular agent connections.

4Of course, real world agents communicate on many di�erent issues, and will likely update their
social trust accordingly. The qualitative results of our analysis would not fundamentally change if there
were many rounds of communication on di�erent issues, as opposed to just two, though the analysis
would become less tractable.
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etc), where |θi − θj| ∈ [0, 1] measures how socially similar agents are.5

Agents prefer to connect to sources of information that cohere with their worldview

and agents who hold the same worldview as them and/or share their social character-

istics. De�ne θ̂ij = −|θj − θi| and ϱ̂ij = −1 if ϱi ̸= ϱj and 0 otherwise. We assume that

conditional of being aware of agent j, an agent i ∈ R receives the following utility from

linking to them:

ui(θ̂ij, δ̂ij) =



αϱ̂ij + (1− α)θ̂ij + εij if j ∈ R

(1− f(ϱi)) + εij j ∈ S0

f(ϱi) + εij j ∈ S1

where εij ∼ U [−1, 1] is an idiosyncratic shock which captures other bene�ts (for exam-

ple, �nancial) i receives from being connected with j, α ∈ [0, 1] measures the relative

importance di�erences in social trust and social characteristics have in determining

the utility generated by a link and f(ϱc) < f(ϱm) = 1 − f(ϱc). The �nal statement

guarantees that those with a conspiratorial worldview receive greater utility, in expec-

tation, from being connected to a countermedia source than those with a mainstream

worldview. We assume that εijs are i.i.d.

The platform and the awareness stage

Now, consider the awareness stage. Agent i ∈ R is aware of agent j with probability

βij = β + β̂ij where β ∈ [0, 1) is the probability that i is aware of j without platform

intervention and β̂ij ∈ [0, 1 − β] represents an increase in the awareness probability

5Our analysis does not preclude there being a correlation between worldview and social charac-
teristics; we merely allow for the possibility that there are agents of both worldviews within each
demographic group.

13



induced by the platform by e.g. suggesting to i that they follow j on a recommendation

list.6 We assume that βij⊥βιk for all i, j, k and ι.

Adjusting βij away from β̂ij is costly to the platform: for example, because, making

agents more aware of each other decreases the prominence of advertisements. Speci�-

cally, we assume that the platform's cost function is C(β̂) = χ
∑

i

∑
j β̂

2
ij = χ

∑
i

∑
j(βij−

β)2, where β̂ is a mR ×n matrix whose ijth entry is β̂ij for i ∈ R and a cost parameter

χ ∈ [0, 1].

De�ne αϱ̂ij + (1−α)θ̂ij = γij < 0. Suppose i is aware of j with probability βij. The

total probability that ij ∈ R are connected is then wij(β̂,β) = (βij + βji)
1+γij

2
(as the

realisations of βij and βji are independent) and:
7

wS
ij(β̂, β) =


(βij)[1− f(ϱi)

2
] i ∈ R and j ∈ S0

(βij)[
1
2
+ f(ϱi)

2
] i ∈ R and j ∈ S1

.

Now we can state the platform's optimisation problem. The platform's payo� is deter-

mined by the following function:

E[D(G)|β̂, β)] =
∑
i∈R

E[φi(G)|β̂, β] =
∑
j

[wij(β̂, β) + wS
ij(β̂, β)],

where φi(G) =
∑n

j gij(G) is i's degree in G. The platform's payo� is increasing in the

expected number of edges in the network, as this is a proxy for the amount of time users

spend on the platform, which in turn determines platform revenues. The platform then

solves the maximisation problem: maxβ̂[D(β̂, β)− C(β̂)].

Network formation then takes place as follows. The platform chooses the matrix, β̂,

6Of course on real-world platforms, the innate probability that i is aware of j would itself be
correlated with i and j's characteristics, as well as the number of users on the platform. This could
easily be incorporated into the model, but would not materially a�ect the conclusions, so we maintain
this assumption for simplicity.

7For clarity, we will use the notation wS
is to refer to the probability that an agent i is connected

with an information source of opinion s throughout.
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determining the matrix of awareness probabilities β. The pattern of awareness and the

idiosyncratic shocks are then realised and each agent simultaneously chooses whether

to connect to each of the agents they are aware of in the linkage phase of the game.

4 Optimal networks and equilibria

Solving the platform's problem

We state the following result regarding the solution to the platform's optimisation

problem described above:

Proposition 2. Holding n �xed, the unique solution to the platform's optimisation

problem, β̂, generates a stochastic block model, G(m(n),W (α)), with discrete type

space, T = {Θ×∆, } = {T1, ...T2y, S0, S1}, a 2(y+1)×2(y+1) matrix of linking probabil-

ities, W = W (α), a number of agents, n, and a vectorm(n) = (mR
1 (n), ...,m

R
2y(n),m

S
0 (n),m

S
1 (n)),

where |Ti| = mR
i (n) and |Si| = mS

i (n).

The unique solution to the platform's problem is such that if ϱi = ϱj and θi = θj, then

wik = wjk for all k. Hence, the solution to the platform's problem generates a single

stochastic block model, with types determined by both an agent's worldview, ϱi, and

the social characteristics measure, θi. The ijth component of the linking probability

matrix, W (α), is then the probability that a type i agent will observe a type j agent.

Upon the realisation of the idiosyncratic shock terms and the pattern of awareness, the

agents' linkage choice determine the realised network of this stochastic block model.

At this optimum, if i, j, k ∈ R then wij > wik if |ϱ̂ij| > |ϱ̂ik| and θ̂ij ≥ θ̂ik or θ̂ij > θ̂ik

and ϱ̂ij ≥ ϱ̂ik, i.e. there is homophily between groups both in terms of worldview and

social characteristics. Let Rc and Rm denote the set of agents with conspiratorial and
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mainstream worldviews respectively. Then if i ∈ Rm and j ∈ Rc and k ∈ S1 then

wS
ik = wS

i1 > wS
j1 = wS

jk with the reverse being true when k ∈ S0.

Homophily between groups takes two forms here: one relating to the social charac-

teristics measure θi and the other relating to worldview. How relatively important these

measures are for network structure depends on the parameter α. To see this, suppose

i, j ∈ Rc and k ∈ Rm with θ̂ij > θ̂ik. Then wij(α) is increasing in α and wik(α) is de-

creasing in α. As α increases, the relative salience of similarities in social trust increases

and the importance of social similarities decrease. The optimal network structure from

the platform's point of view re�ects this, and hence low social trust individuals become

more (less) connected in expectation as α increases (decreases).

Public opinion in the limit

Throughout, we will consider the expected opinions of agents on a stochastic block

model generated by the platform's choice of the awareness matrix, β̂, prior to the

realisation of both the pattern of awareness and the idiosyncratic shock terms.

Formally, we take a sequence of stochastic block models {G(m(n),W (α))}n∈N in

order to analyse the distribution of opinions as n → ∞. Doing so allows us to charac-

terise the distribution of opinions held by agents in steady state, and, given the large

number of users of social networks, provide a good approximation of the distribution

opinions that would be held by agents on social block models constructed in the manner

described above.

For a �xed n, recall thatmS
i (n) denotes the number of information sources of opinion

i, and mR
s (n) denotes the number of regular agents of type s. We write:
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limn→∞
mS

i (n)

n
= qSi > 0, limn→∞

mR
s (n)

n
= qRs > 0,

as the limiting fractions of information sources with opinion i and regular agents of

type s respectively. Throughout, we will maintai n the assumption that qS0 = qS1 = q,

which, given the optimal expressions for wS
i0 and wS

i1, implies that each type observes

the same proportion of information sources, di�ering only in the relative amount of

misinformative sources they observe.8 We let q̄S = wS
i0q + wS

i1q.

Abusing notation, let ṽi(m(n), α, δ) be a random variable denoting the opinions of

an agent i and distributed according to the steady state of the a stochastic block model

G(m(n),W (α)). De�ne:

zs(n, α, δ) :=

∑
i∈s ṽi(m(n), α, δ)

mR
s (n)

,

as the average opinion of type s agents for the model G(m(n),W (α)) regarding issue

I2. Let TR be the set of all types of regular agents, with Tm and Tc being the set of types

of regular agents with mainstream and conspiratorial worldviews respectively. Public

opinion regarding I2 can then be de�ned as follows:

z̄(n, α, δ) =
1

mR

[
∑
s∈TR

mR
s (n)zs(n, α, δ)].

We be considering the limit distributions of both public opinion, limn→∞z̄(n, α, δ) =

z̄(α, δ), and the steady state opinions of type js, limn→∞zj(n, α, δ) = zj(α, δ).

We will also be interested in the average social trust level for type s agents, which

we denote, somewhat abusing notation, as follows:

δs :=

∑
i∈s δi(n, α)

mR
s (n)

,

8This assumption simpli�es the analysis, but the model could easily incorporate agents who prefer
to observe fewer or more information sources than others.
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Our results going forward will be stated for the 2y × 1 vector of average social trust

levels when social trust levels are consistent, which we denote δ∗(n, α).

We note that δ∗(n, α) is not random with respect to the communication process (as

it considers the expectation of this process) but is random prior to the realisation of

the graph, G, whereas the opinion vector, zs(n, α, δ) is random both because the graph

generating process is stochastic and agents' opinions change due to communication.

Timing of the model, a summary

We summarise the timing of the model as follows:

1. The platform chooses the awareness matrix, β;

2. Agents make their connection choices, generating a graph G;

3. Communication takes place on the graph G about issue I1, which yields a social

trust vector, δ(n, α);

4. Communication takes place on the graph G about issue I2,with agents communi-

cating with social trusts δ(n, α).

5 Opinion formation and social trust

We state an expression for the limit vector of equilibrium opinions for a �xed set of

social trust levels. We then state a result concerning the existence and uniqueness of

the social consistent equilibrium of the model.
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The opinion vector

De�ne Ŵ (α) as the 2y×2y trust-adjusted linking probability matrix whose jkth entry

is qkδjwjk(α), where wjk(α) is the probability that a type j regular agent is connected

with a type k regular agent. De�ne the normalised expected degree of a type j whose

agents whose average social trust level is δj as follows:

dj =
∑
k∈TR

δjqjwjk(α) + qS1w
S
j1(α) + qS0w

S
j0(α).

Let Λ(α) denote a diagonal matrix whose jth component is dj andM(α, δ) := Λ(α, δ)−

Ŵ (α, δ). We de�ne a 2y × 1 column, zS whose jth entry is qS1w
S
j1. The following

Theorem holds:

Theorem 1. Suppose that for all ∀s ∈ T , δi = δj if i, j ∈ s. Then, for any 2y × 1

social trust vector, δ, the limit vector of the expected opinions of regular agents converges

almost surely to the expression:

z(α, δ) = M−1(α, δ)zS.

The jth component of the vector zS, qS1w
S
j1, measures the direct e�ect information

sources have on the belief probabilities of an agent of type j. The matrix M−1(α) then

measures the ampli�cation of information sources by regular agents on social media:

the higher the expected number of links between one agent type, j, and another, k, the

larger the e�ect that the information sources that a given agent of type j is connected

to have on an agent of type k, and vice versa.

The result in Theorem 1 is consistent with that found in Stadler (2022), with the

key di�erence being that the matrix M−1(α, δ) is dependent on the levels of social
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trust of the di�erent members of population. As we will see, this feature of the opinion

vector z(α, δ) results in the peer-to-peer interaction structure having an important role

in determining public opinion and polarisation.

We have stated Theorem 1 assuming that ∀s ∈ T , δi = δj if i, j ∈ s. Let W̃ (α) be

a 2y × 2y matrix whose ith entry is
wijqj∑
j∈TR

wij
for i, j ∈ TR. Having stated the vector of

the expected opinions of regular agents, we validate this assumption as follows:

Proposition 3. The 2y × 1 social trust vector, δ∗(n, α) →a.s. W̃ (α)z(α,1). Further-

more, for all s ∈ T , the following result holds:

limn→∞maxi∈R|E[vi(n)|G(n)]− zs(α,1)| = 0 for i ∈ s.

As communication when δ = 1 is a special case of the situation analysed in Theorem

1, it follows that the consistent value of δi for agent i of type s converges almost surely

to an average value which can be expressed δ∗s =
∑

t∈TR(
wstqt∑
t∈TR

wst
zt(α,1)). As n → ∞,

then, the maximum deviation from this expression for the vector δ∗(n, α) tends to zero.

From now on, then, we will analyse the limit of the communication process letting

δ∗(α) = W̃ (α)z(α,1).

The e�ect of social trust on opinions

To �x ideas about the e�ect of social trust, we consider the e�ect of a hypothetical

exogenous change in social trust:

Proposition 4. Suppose i ∈ Tc and j ∈ Tm. Then,
dz̄(α)
dδi

> 0 and dz̄(α)
dδj

< 0.

Proposition 4 highlights the e�ect social trust has on the belief vector. If the social

trust of the agents with a conspiratorial worldview increases, then the countermedia
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sources they tend to follow become relatively less in�uential over their opinions, and

they listen to their peers more. This leads to an increase in the probability that they

believe the truth, which also increases that probability for other types of agent as well.

The opposite holds for agents with a mainstream worldview: in this case, increasing

δj results in agents who are more likely to have a mainstream view than average being

more receptive to the opinions of their peers. This ultimately results in agents of that

type putting more weight on the opinions of those who share misinformation more,

which leads to a reduction in the probability that the average agent is informed.

Endogenous social trust

The equilibrium social trust vector, δ∗(α), is tied down by the nature of the communi-

cation process about issue I1. We �rst state a result linking social trust in equilibrium

and social characteristics:

Proposition 5. Suppose i ∈ Ts ∈ Tc and j ∈ Tk ∈ Tm be such that θi = θj. Then if

α > 0, δ∗i (α) > δ∗j (α).

Groups with the same social characteristics can be ordered in terms of their social trust

levels according to their worldview, with those of a conspiratorial worldview having

lower social trust. This is the result of the fact that an agent i with the conspiratorial

worldview are more likely to be connected with others with that worldview, who spread

misinformation during the �rst communication phase with higher probability. As a

result, i is less trusting in the second. This provides an account as to why those who

are more likely to believe misinformation in the �rst place are also more likely to have

lower social trust (see, e.g. Hopp, 2020).

We will be interested in the e�ect of the ideological preference parameter has on
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public opinion. It is therefore worth stating the following result:

Proposition 6. Suppose i ∈ Ts ∈ Tc, j ∈ Tk ∈ Tm and θi = θj. Then δ∗i (α)− δ∗j (α) is

increasing in α.

An increase in α increases the extent to which agents interact with those who share

their worldview. As a result, agents with a conspiratorial worldview are less trusting in

equilibrium, because they are more likely to encounter misinformation than when echo

chambers are less pronounced.

6 Network structure and echo chambers

We examine the e�ect that di�erent network types have on misinformation. Speci�cally,

we compare a network where there is more homophily with regards to social trust with

a network where social similarity is more important in determining who connects with

whom. In doing so, we also analyse the e�ect of echo chambers on the spread of

misinformation across the network.

The e�ect of echo chambers

Our analysis in Section 5 alludes to a potential trade-o� in the e�ect of echo cham-

bers on public opinion. On the one hand, echo chambers reduce the extent to which

relatively low social trust and misinformation believing agents communicate with their

relatively high social trust peers, but they also reinforce the di�erences in social trust

between the agents with the two di�erent worldviews, with misinformed agents becom-

ing more distrustful as echo chambers become stronger. These two channels through

which network structure a�ects public opinion, which we term the �asymmetric com-
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munication� and �change in social trust� channels respectively, a�ect average public

opinion in opposite directions.

We resolve this trade-o� in the following way:

Theorem 2. There exists a ᾱ such that, if α < ᾱ then public opinion, z̄(α, δ∗), is

decreasing in α and if α > ᾱ then z̄(α, δ∗) is increasing in α.

Theorem 2 shows that echo chambers have a non-linear e�ect in our model. Weak echo

chambers result in the social trust parameters of agents with di�erent worldviews being

relatively similar. In which case, communication between the two groups is relatively

symmetric, and so the asymmetric communication channel is weak. Meanwhile, when

echo chambers are weak, an increase in α results in a relatively large decrease (increase)

in the social trust levels of conspiratorial (mainstream) agents. Hence, increasing α has

the net e�ect of increasing the probability misinformation is believed.

In the case when echo chambers are strong, the reverse is true. In this case, the social

trust levels of conspiratorial agents are signi�cantly lower than those of their mainstream

peers, and hence the asymmetric communication channel is strong, dominating the

change in social trust channel. As a result, strengthening already strong echo chambers

results in a decrease in misinformation.

Network types and misinformation

We observe that many large-scale online social networks can be categorised into two

broad classes. The �rst type, which we call friendship networks, are such that users

tend to be connected with others they have met, to at least some extent, o�ine, and

are thus associated with them by friendship, work or education. Examples of friendship

networks include Facebook and Snapchat. Interest-based networks, on the other hand,
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involve agents interacting with people with similar worldviews or interests to them. The

most prominent example of an interest-based network is Twitter, but forum networks

and Reddit work in a similar way.

In terms of our model, interest-based networks would be generated by a relatively

high value of α, the relative weight di�erences in social trust have on the probability

that an agent connects with another conditional on being aware of them. The platform's

algorithm would then be more likely to show agents with low social trust other agents

with this worldview. On the other hand, friendship networks would be generated by a

relatively low value of α, and as a result i's social demographic measure, θi, has more of

an impact on the strength of i's linking probabilities than in the interest-based network.

An example of these two networks is displayed below.

Figure 2: The black node represents a countermedia source, the grey node represents
a mainstream media source, and the other colours denote di�erent types of agent.
Speci�cally, the light and dark blue agents are of the mainstream worldview, with the
other nodes being conspiratorial, the light blue and orange types are maximally socially
similar, as are the dark blue and red types.

To provide an interpretation of the result in Theorem 2, we de�ne a friendship stochastic

block model as one in which α < ᾱ, while if α ≥ ᾱ then the model is a interest-based
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stochastic block model. Then, the following result holds:

Corollary 1. If the network is generated by a interest-based stochastic block model then

z̄(α) is increasing in α, while if it is generated by a friendship stochastic block model

then z̄(α) is decreasing in α.

Theorem 2 and Corollary 1 highlight the role of the platform's algorithm in the spread

of misinformation. By recommending countermedia sources to low social trust types,

the platform's incentive to maximise engagement straightforwardly increases the proba-

bility that misinformation is believed. The role of platforms' algorithms in propagating

sources that are misinformative, which this mechanism within the model captures, is

well established.

However, the role of the platform goes beyond recommending countermedia sources.

The platform's incentive to maximise engagement means that, if they are operating in

an environment in which agents have a strong desire for homophily with regards to

worldview, then the optimal algorithm strengthens and reinforces this desire, reducing

the amount of misinformation spread on the platform. If, on the other hand, agents

have a stronger desire for homophily with regards to social characteristics, then the

platform's algorithm weakens echo chambers further, which also serves to reduce the

amount of misinformation on average. Hence, the platform's incentives to increase

engagement with regards to peer-to-peer connections may somewhat counteract the

negative e�ect information sources suggestions have on misinformation.

Polarisation

While our main focus here is on the average belief in misinformation, it is also worth

commenting on polarisation. We de�ne polarisation as follows:
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P (α) := limn→∞
∑
j∈TR

qj|zj(n, α)− ẑ(n, α)|.

Polarisation then measures the expected deviation of the expected belief of a type j

agent from the average belief of a generic agent as n → ∞.

Theorem 3. Polarisation P (α) is increasing in α. The level of polarisation in the

friendship network is then less than in the interest-based network, P (αF ) < P (αI).

Echo chambers in this setting increase the probability that a random agent is informed

in steady state, but they increase polarisation. This follows simply from the fact that

the stronger the echo chamber is in equilibrium, the less interaction there is between

agents who observe countermedia sources with di�erent probabilities. If agents who are

likely to have di�erent opinions to one another do not interact as much, low social trust

agents are more likely to believe misinformation, and high social trust agents are more

likely to be informed.

Taken together, Theorems 2 and 3 imply that, if the platform was incentivised to

intervene in the structure of the network, there can be a trade-o� between polarisation

and the probability that misinformation is believed by a random agent when echo cham-

bers are relatively pronounced. Often polarisation is discussed as being a fundamental

part of the spread of misinformation. Here, as more pronounced echo chambers protect

high social trust individuals from being as exposed to misinformation, the problem of

polarisation and the spread of misinformation are two di�erent issues, and solutions to

combat them may be contradictory when echo chambers are strong to begin with. We

consider interventions in the structure of the network below.
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7 Policy implications

We consider policy interventions in which a social planner is able to intervene in the

platform's awareness algorithm to reduce the extent which misinformation propagates

through the network.

To keep the analysis at the level of the group, rather than assessing interventions

which a�ect individual agents, we will assume that any intervention requires the plat-

form to maintain the stochastic block structure which is, at any rate, optimal (as per

Proposition 2). That is, we let β̄st be the equilibrium awareness level of all agents i of

type s and j of type t, and will examine the derivative ∂z̄(α;β∗)
∂β̄st

.

Benchmark: unconstrained optimal interventions

We �rst examine a benchmark case where a social planner has full control of the

platform's algorithm and wishes to reduce the spread of misinformation on the net-

work. We also assume β = 0, which implies that the planner has full control over the

awareness matrix β. That is, the planner solves the following maximisation problem:

maxβ̂[z̄(α,β; β̂)], the solution to which we characterise as follows:

Proposition 7. Suppose α < 1. Any β∗ which solves the misinformation minimisation

problem is such that β∗
ij = 0 if i ∈ Tc and j ∈ Tm.

The probability that a random agent believes misinformation when echo chambers are

maximally strong (e.g. those generated by α = 1) is equal to that probability when

α = 0, i.e. where there is no homophily in ideology. However, the planner is not able

to control α, and hence, they cannot compel agents to connect across the ideological

divide as frequently as they do within their own worldview. Of these two cases, the

27



planner can only implement maximally strong echo chambers, reducing the probability

that conspiratorial and mainstream agents interact to zero.

Structural interventions

Clearly, the above benchmark is unlikely to be implementable. We now consider tar-

geted algorithmic interventions which are the most e�ective in reducing misinformation

at the margin. We call these interventions �structural�.

We consider a marginal change in an individual awareness probability βij. Network

structure, the number of agents who are of a given type and the existing strength of

echo chambers will impact on the overall e�ect such an intervention will have. We will

consider two types of marginal structural intervention: interventions in the peer-to-peer

network and in information source recommendations.

Interventions in the peer-to-peer network

There are two types of peer-to-peer marginal interventions to examine. One involves

marginally decreasing some βst with the aim of reducing the extent to which asymmetric

communication occurs, whereas the other involves marginally increasing some βij in

order to reduce di�erences in levels of social trust between the two types. To consider

these two cases formally, we de�ne B = −β, so that we can more easily consider

marginal decreases in β. The following statement holds:

Theorem 4. Suppose i, j ∈ Tm and s, t ∈ Tc, zi > zj and zs < zt, with δi > δj and

δs < δt. The following two statements hold:

(1) ∂z̄(α;B∗)
∂B̄sk

> ∂z̄(α;B∗)
∂B̄tk

for k ∈ Tm and ∂z̄(α;B∗)
∂B̄ik

> ∂z̄(α;B∗)
∂B̄jk

for k ∈ Tc;

(2) ∂z̄(α;B∗)
∂β̄sk

< ∂z̄(α;B∗)
∂β̄tk

for k ∈ Tm and ∂z̄(α;B∗)
∂β̄ik

> ∂z̄(α;B∗)
∂β̄jk

for k ∈ Tc.
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The �rst claim in Theorem 4 states that if the platform were to reduce the probability

of a connection between a group of conspiratorial agents and a group of mainstream

agents, then choosing a conspiratorial group with low social trust and a high probability

of belief in misinformation is more e�ective at reducing misinformation than a group

with higher social trust and a lower probability of believing misinformation. Such

isolated agents spread misinformation more e�ectively than those agents who are more

likely to observe mainstream agents.

Similarly, reducing the extent to which an isolated group of mainstream agents -

that is, a group with relatively high levels of social trust and low probability of be-

lieving misinformation - is connected with conspiratorial agents also disproportionately

increases the probability a random agent believes misinformation.

The same applies in reverse if the platform were to increase the likelihood of cross-

ideological linkages. In this case, a social planner wishing to reduce misinformation

would prefer to further strengthen the links between less isolated mainstream and con-

spiratorial agents, as doing so maximises the extent to which social trust levels of the

two groups become more similar, and minimises the costs of asymmetric communica-

tion.

Theorem 4, then, holds because of the same forces as those that explain the result

in Theorem 2: the e�ects of echo chambers in the model are non-linear, such that

strengthening relatively strong links and weakening relatively weak ones across the

ideological divide both have the e�ect of reducing the spread misinformation because

the former results in a weakening of the asymmetry in social trust levels while the latter

reduces the extent to which asymmetric communication occurs in the �rst place.

Furthermore, Theorem 2 directly implies that there is some ∃α̂ such that if α < (≥)α̂

then the most e�ective intervention which reduces the probability of links between a
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group of conspiratorial and a group of mainstream agents is less (more) e�ective than

the most e�ective intervention which increases that probability.

Intervening in information source recommendations

We now consider a marginal change in the mix of information sources users observe.

Clearly, to reduce misinformation it would be necessary to reduce the proportion of

countermedia sources observed by a given agent. However, which user(s) to target with

such an intervention is not trivial and will depend on network structure, as we show

below.

We note that we can write M(α, δ∗) = A(δ∗)V (α)Q = Y (α, δ∗)Q where A(δ∗) is

a diagonal matrix with sth component δ∗s , Q is a diagonal matrix with s component

qs and V (α) is a symmetric matrix whose ijth entry is equal to 1
qjδi

mij. De�ne the

in�uence of a type s ∈ TR agent as ϕj :=
∑

j yij(α), where yij(α) is the ijth entry of

Y −1(α). We also de�ne β̃i(S1, S0) := β̄iS1 − β̄iS0 , where β̄iSj
is the probability that a

type i is aware of an information source of type Sj. We make the following observation:

Proposition 8. Suppose that kt ∈ St with ϕi > ϕj. Then | ∂z̄(α;β∗)

∂β̃i(S1,S0)
| > | ∂z̄(α;β∗)

∂β̃i(S1,S0):
|.

Furthermore, for any j ∈ Tm, ∃i ∈ Tc such that ϕi > ϕj.

Increasing the proportion of mainstream media sources observed by an agent decreases

the probability that every agent believes misinformation. The in�uence of i, ϕi, mea-

sures the e�ect the information sources observed by an average i type agent have on

the opinions of other regular type agents, weighted by the total proportion of agents

who are of that type. Hence, if ϕi > ϕj, then the marginal e�ect of increasing the rel-

ative probability type is observe mainstream sources on public opinion is greater than

marginally increasing the same probability for type js.
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The second result in Proposition 8 indicates that for any mainstream type, there

exists conspiratorial type which is more in�uential than them. Speci�cally, if i and j

have the same social characteristics (i.e. θi = θj) then if i ∈ Tc and j ∈ Tm, then i

is more in�uential than j. Both i and j occupy an equivalent position in the network

when qi = q ∀i. As a result, what determines the relative in�uence between the two

types is the extent to which they change their opinions when confronted with agents

with a di�ering viewpoint, and, as low social trust types are less convincible than high

social trust types, it follows that i is more in�uential than j.

8 Concluding remarks

We have analysed an opinion formation model in which some agents have lower social

trust than others, with an agent's social trust being determined by the extent to which

their neighbours are to spread misinformation. The prescence of social trust results in

asymmetric communication between agents. Echo chambers have the e�ect of increasing

di�erences in social trust levels but decrease the extent to which misinformed and

informed agents interact. Hence, weakening echo chambers can increase or decrease the

spread of misinformation depending on the characteristics of the network to start with.

The model set-up leans heavily towards the current discourse in Western countries

like the United States and the UK where mainstream sources are relatively trustworthy

and countermedia sources are often misinformative.9 Mainstream sources may not

necessarily be trustworthy in other countries, where mainstream media sources may

echo government propaganda. For example, there is evidence that Facebook was used

to spread of pro-government and anti-Muslim misinformation during the 2017 Myanmar

9This, of course, does not hold all the time even in Western countries, where, for example, main-
stream sources can be, for example, captured by corporate interests.
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genocide (see Whitten-Woodring et al. 2020). In this case, countermedia sources would

counteract rather than propagate misinformation. We have not actively explored this

possibility here, but note that our model provides a general framework to analyse such

questions.

One aspect of the e�ect of trust on misinformation propagation which is ignored

here is trust levels in information sources. Misinformation reduces trust in the media

in general, and there is evidence (see, e.g. Hopp et al) that those who spread misinfor-

mation are less trusting of mainstream media sources. We do not model the extent to

which trust levels in media a�ect misinformation spread, but it could incorporate these

factors, which would serve to strengthen the mechanisms observed here.

We have focused largely on the implications of social trust on the spread of misin-

formation. However, the model here provides general insights as to how di�erences in

social trust interact with network structure in determining opinion formation in net-

work models. In models in which agents communicate symmetrically, network structure

shapes variables like speed of convergence (e.g. Golub and Jackson, 2010) or polarisa-

tion (e.g. Sadler, 2022) but it plays less of a role in determining the average belief of

agents on the network.

Here, network structure, and speci�cally links between high and low social trust

agents have a crucial part to play in determining the extent to which misinformation

is believed. This opens up questions regarding the e�ect network structure has on

opinion formation when agents are susceptible to social biases, such as con�rmation

bias, stubborn opinions and status quo bias.
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Appendix

Preliminaries

Many of the results in the main text require evaluating various derivatives of the matrix

M−1(α, δ∗). Throughout, we let rij represent the ijth component of M−1(α, δ∗).

It is also worthwhile establishing some facts about the matrices M(α, δ∗) and

M−1(α, δ∗). By assumption, qSi = q for i = 0, 1 and wS
i0q + wS

i1q = q̄S for all i.

As δi ̸= δj and each type by de�nition have di�erent values for θk, then, the ma-

trix M(α, δ∗) is of full rank (i.e. has rank of 2y) and is such that
∑

j mij = q̄S

for all j. This in turn implies that each row of the matrix M−1(α, δ∗) sums to 1
q̄S
.

To see this, let v be a 2y × 1 vector �lled with 1s and hence M(α, δ∗)v = v. Thus,

M−1(α, δ∗)v = M−1(α, δ∗)M(α, δ∗)v = v. We also let 1
1−q̄S

zS = z̃S and Tc and Tm

denote the set of types which contain agents with conspiratorial and mainstream world-

views respectively.

We note that we can write M(α, δ∗) = A(δ∗)V (α)Q, where A(δ∗) is a diagonal

matrix with ith component δi and V (α) is some symmetric matrix. It follows that

M−1(α, δ∗) = Q−1V −1(α)A−1(δ∗), where V −1(α) is also a symmetric matrix. We also

let Y (α, δ∗) = AV (α, δ∗).

We establish a further result which will be useful for proving the statements in the

text:

Lemma 1. M(α, δ∗) is an M-matrix and hence M−1(α, δ∗) is non-negative.

Proof. By de�nition, M(α, δ∗) is a Z-matrix (i.e. a matrix where mij ≤ 0 for all i ̸= j).

M(α, δ∗) is also strictly diagonally dominant by construction. It follows from the

Gershgorin circle theorem that the real parts of M 's eigenvalues are positive. M(α, δ∗)
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is therefore a M−matrix. M(α, δ∗) is also non-singular by construction. The inverse

of a non-singular M -matrix is non-negative.

Proof of Proposition 1

Suppose �rst that there is a connected subgraph of regular agents, that is, a connected

graph such that for all i ∈ R, ∃j ∈ R such that ij ∈ G. As the graph is connected and

S0, S1 ̸= ∅, then it follows that there exists at least one link ij ∈ G, where i ∈ R and

j ∈ Sj for j = 0, 1. The fact that the subgraph of regular agents is connected and each

regular agent i changes their opinion with some positive probability if the link ik ∈ G

is realised in the communication game, it follows that vI
t is irreducible, and thus has

a unique steady state distribution. If the subgraph of regular agents is not connected,

then the same argument holds for each component of the regular agent subgraph.

Proof of Proposition 2

As per the expressions for wij and wS
ij in the text, and noting that |γij| < 1, D(β̂, β) is

a (weakly) increasing and linear function in β̂ij for all i, j. The cost function is C(β̂)

is convex and separable in each β̂ij. It follows that either β̂
∗
ij = 1− β (i.e. the solution

is not interior) or the solution to the �rst-order condition ∂D(β̂,β)
∂βij

− ∂C(β̂)
∂βij

= 0. If this

�rst-order condition is satis�ed, then:

β̂∗
ij =



1+γij
4χ

if i, j ∈ R

2−f(ϱi)
4χ

i, ∈ R and j ∈ S0

1+f(ϱi)
4χ

i, ∈ R and j ∈ S1

.

Let T be such that if i, k ∈ T , then θi = θk and ϱi = ϱk. Then for any j ∈ G and
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i, k ∈ T, whether the solution is interior or not, β∗
ij = β∗

kj and β∗
ji = β∗

jk (and, in fact,

it is simple to see that β∗
ij = β∗

ji). As this applies to any θi ∈ Θ and ϱi ∈ ∆, it follows

that for each T ∈ T , it follows that if i, k ∈ T then, for the solution to the platform's

problem, wij = wkj for all j ∈ G, including when j ∈ S0 or S1. As |∆| = 2 and |Θ| = y,

it follows that |Θ×∆|+ 2 = 2(y + 1), as required.

Proof of Theorem 1 and Proposition 3

To simplify notation we write D =
∑

i φi(G) as the total degree of G. In the communi-

cation game, an edge is realised with probability 1
D
. Let G̃(n) denote a Markov matrix

whose ijth entry can be written:

g̃ij =



δi
D

if i, j ∈ R and j ∈ Gi

1− φi(G)(µS
i +δiµ

R
i )

D
if i, j, ∈ R and i = j

1
D

i, ∈ R and j ∈ S

.

where µS
i =

∑
j∈S gij

di
, µR

i =
∑

j∈R gij

di
. Let G̃R(α, n) denote the submatrix of interactions

between regular agents and G̃S(n) denote the submatrix of interactions between stub-

born agents and regular agents. Let xR = E[vi|G(n,W (α))]. At steady state, it must

be that:

xR = G̃S(n)vS + G̃R(n, α)vR

where vS is the vector of information source opinions and vR is the vector of regular

agent opinions. It follows that:

xR = (I − G̃R(n, α)−1G̃S(n)vS.
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We de�ne the mR ×mR matrix Ḡ(α, n, δ) as a matrix whose ijth entry is written:

ḡij =



δiwij(α)

E[D(n,α)]
if i, j ∈ R and j ∈ Gi

1− (
∑

j∈R δiwij(α)+
∑

k∈S wS
ij(α)

E[D(n,α)]
) if i, j, ∈ R and i = j

wij(α)

E[D(n,α)]
i, ∈ R and j ∈ S

.

Let ϑi(n, α) =
∑

j∈R δiwij(α)m
R
j (n)+

∑
j∈S w

S
ij(α)m

S
j (n). De�ne H(n, α, δ) as a 2t× 2t

matrix with entry jk :

hjk =


δjm

R
k (n)wjk(α)

E[D(n,α)]
if j ̸= k

1− ϑj(n,α)

E[D(n,α)]
+

δj(m
R
j (n)−1)wjj(α)

E[D(n,α)]
if j = k

.

H(n, α) is then a representative type matrix, with its jkth entry representing the ex-

pected interaction between an agent of type j and a random type k agent. De�ne:

x̄R(σ) = (I − ḠR(n, α))−1ḠS(n)vS; and

z(n, α, δ) = (I −H(n, α, δ))−1ẑS(n, α)

where zS(n, α, δ) is a column vector ith entry is
wij(α)m

S
1 (n)

E[D(n,α)]
and ḠR(n, α) and ḠS(n)

denote the submatrices of interactions between regular agents and other regular and

information source respectively corresponding to the stochastic matrix G̃(n, α). It is

clear that if i is of type k, then the kth entry of x̄(n, α) is equal to the jth entry of

z(n, α, δ).

We now need to show that |x(n, α) − x̄(n, α)| →a.s. 0 and z(n, α, δ) → z(α, δ).

For the �rst statement, we let An be a random square matrix where aii = 0 and

aij = D(n, α)g̃ij. An is then the sum of an upper and a lower triangular matrix, both
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of which have independent entries for all δi, δj ∈ [0, 1]. The following statement holds,

as shown in the proof of Theorem 1 in Sadler (2022):

Lemma. (Sadler, 2022) There exist constants c, C > 0 such that: Pr(|x(n, α) −

x̄(n, α)| > k|vS |
n3/2 ) ≤ Ce−ck2 for all su�ciently large k. It follows from the Borel-Cantelli

lemma that |xR(n, α)− x̄R(n, α)| →a.s. 0 for all su�ciently large k.

To see that z(n, α, δ) → z(α, δ), note the following:

(I −H(n, α))−1ẑS(n, α, ) = (
E[D(n, α)]

n
I − E[D(n, α)]

n
H(n))−1E[D(n, α)]

n
ẑS(n, α),

which in turn equals (Λ̃(n, α)−Ŵ (n))−1zS(n),where Λ̃(n, α) is a diagonal matrix with

ith component E[ϑi(n,α)]−wii

n
. The limit of this expression as n → ∞ is then the statement

in Theorem 1.

To prove Proposition 3 we note that the case where δi = 1 ∀i ∈ T is a special

case of the above analysis. We note that the above analysis implies that δi(n, α) →a.s.∑
t

wst

(
∑

t wst)
zt = δ∗s . Almost sure convergence automatically implies the second result in

Proposition 3.

Proof of Proposition 4

Public opinion, z̄(α, δ∗), can be written: M−1(α, δ∗)z̃SqT = z̄(α, δ) where qT is a 1×2t

vector with ith entry qi. The vectors q
T and zS are independent of δi, but M

−1(α, δ∗)

is a function of it. We analyse ∂M−1(α,δ∗)
∂δi

= −M−1 ∂M(α,δ∗)
∂δi

M−1.

Note that each row of M−1 sums to 1
q̄S
. Hence, each row sum of ∂M−1(α,δ∗)

∂δi
equals

0. Consider ∂M(α,δ∗)
∂δi

. This matrix has a row of 0s for all rows corresponding to a

type, k ̸= i, but −∂mii(α,δ
∗)

∂δi
> 0 and −∂mij(α,δ

∗)
∂δi

< 0 for all j. Note that zS
i ≤ zS

k
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for i (as i ∈ Tc) and all k with the inequality strict when k ∈ Tm. Hence, if i ∈ Tc,

M−1(α, δ∗)z̃SqT > 0

Precisely the same argument in reverse applies to ∂M−1(α,δ∗)
∂δj

, for j ∈ Tm, and so

∂M−1(α,δ∗)
∂δj

zSqT < 0.

Proof of Proposition 5 and 6

We �rst prove the following Lemma:

Lemma 2. Suppose i ∈ Tc and j ∈ Tm and θi = θj. Then zi(α,1) > zi(α,1) when

α > 0.

To see this, we note �rst that that each row of the matrixM−1(α) sums to 1
q̄S
. Given the

equilibrium stochastic block model, it must be the case that when θi = θj, wik > wjk

if k ∈ Tc. This implies that rik(α,1) > rij(α,1) (the ikth and ijth entries in the

matrix M−1(α) respectively) when α > 0. As zSi = zSk > zSj , the result holds. Again,

θi = θj, wik > wjk if k ∈ Tc. As δ∗(α) = W̃ (α)Qz(α,1), the result in Proposition

5 follows immediately. Furthermore, the fact that
∑2y

j rij = 0 for all i implies that

rik(α,1)− rij(α,1) is increasing in α, which implies Proposition 6.

Proof of Theorem 2 and Proposition 7

To assess the function z̄(α, δ∗) and its derivative, we write δ∗(α) where it is useful to

do. We will show that z̄(0, δ∗(0)) = z̄(1, δ∗(1)). To see this, �rst note that zSi = zSj

for i, j ∈ Tk k = c,m: when α = 1, zi(1, δ
∗(1)) = z̃Si for any arbitrary δ∗ and so

z̄(1, δ∗(1)) =
∑2y

i=1 qiz̃
S
i .

Recall thatQM−1z̃S1T = z̄(α, δ∗).We know thatM−1(α, δ∗) = Q−1V −1(α)A−1(δ∗(α)),
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and so:

QM−1(α, δ∗)z̃S1T = V −1(α)A−1(δ∗)z̃S1T .

When α = 0, if θi = θj then δi = δj and wik = wjk ∀k. It follows that we can de�ne a

new type space, T̂ = {T̂1,..., T̂t} where T̂i = {Tj∪Tk} for some j, k ∈ T with θj = θj. As

the product V −1(α)A−1(δ∗) is independent ofQ, we de�ne V̂ −1(α, δ∗) and Â−1(α, δ∗) as

y×y matrices whose ijth entry are equal to the ijth entry of V −1(α, δ∗) and A−1(α, δ∗)

respectively and ẑS as a y × 1 vector whose ith entry is equal to z̃Sj +z̃Sk for j ∈ Tc and

k ∈ Tm. Hence, z̄(0, δ
∗(0)) = z̄(1, δ∗(1)).

To prove Theorem 2, we consider the e�ect of a marginal change in α on z̄(α), recall

that Y (α) = A(δ∗)V (α, δ∗). We will analyse ∂Y −1(α,δ∗)
∂α

= −Y −1(α, δ∗)∂Y (α,δ∗)
∂α

Y −1(α, δ∗).

We note that:

∂z̄(α, δ∗)

∂α
= −Y −1(A(δ∗)

∂V (α)

∂α
+

∂A(δ∗)

∂α
V (α))Y −1z̃S1T . (1)

We analyse the derivatives ∂V (α)
∂α

and ∂A(δ∗)
∂α

in turn.

Let vij denote the ijth entry of the matrix ∂V (α)
∂α

. Given the solution to the platform's

maximisation problem, the matrix ∂V (α)
∂α

is such that if i, j ∈ Tc then vij < 0 and if

k ∈ Tm, vik > 0, with |vij| = vik if θj = θk. It follows that vii = 0,
∑

j vij = 0 for all i

and, as V (α) is symmetric, so too is ∂V (α)
∂α

.

Consider a type pair, i, j where i ∈ Tc and j ∈ Tm. By Proposition 4, δ∗i (α) ≤

δ∗j (α) with the equality strict if α > 0. As zSi ≤ zSj for i ∈ Tc and all k with the

inequality strict when j ∈ Tm, the symmetry of ∂V (α)
∂α

implies that ith and jth entry

of the vector −Y −1A(δ∗)∂V (α)
∂α

Y −1zS1T is weakly greater than 0, increasing in δ∗j − δ∗i

and equal to zero when δ∗j − δ∗i = 0. As these observations hold for all i, j pairs,

−Y −1A(δ∗)∂V (α)
∂α

Y −1zS ≥ 0.

39



We note that δ∗(α) = W̃ (α)Qz(α,1), and vij(α) = −wij(α) for i ̸= j, with

vii(α) also linearly decreasing in wij. Again, i ∈ Tc and all k with the inequality

strict when j ∈ Tm: it follows that ∂zi(α,1)
∂α

< 0 if i ∈ Tc and increasing otherwise.

Hence ∂δi
∂α

< 0 if i ∈ Tc and increasing otherwise. By Proposition 4, this implies that

−Y −1 ∂A(δ∗(α))
∂α

V (α)Y −1zS1T < 0.

We letG(α) = −Y −1A(δ∗(α))∂V (α)
∂α

Y −1zS1T and F (α) = −Y −1 ∂A(δ∗(α))
∂α

V (α)Y −1zS1T ,

and so ∂z̄(α,δ∗)
∂α

= F (α)+G(α). Let X(α, δ∗) = A(δ∗)∂V (α)
∂α

and X
′
(α, δ∗) = V (α)∂A(δ∗)

∂α
.

Then:

∂G(α, δ∗)

∂α
= [2Y −1X(δ∗, α)Y −1X(δ∗, α)Y −1 − Y −1(

∂A

∂α

∂V

∂α
)Y −1]zS1T .

The �rst term is weakly positive as per the above analysis. The ith entry of ∂A
∂α

is

negative if i ∈ Tc and positive otherwise. The ijth entry of ∂V
∂α

is negative if i, j ∈ Tk for

k = c,m and j ̸= i and positive otherwise. Hence, Y −1(∂A
∂α

∂V
∂α

)Y −1zS1T < 0, implying

the second term (noting the negative sign) is (weakly) positive. Hence, ∂G(α,δ∗)
∂α

≥ 0 for

all δ∗. Now consider:

∂F (α, δ∗)

∂α
= [2Y −1X

′
(δ∗, α)Y −1X

′
(δ∗, α)Y −1 − Y −1(

∂A

∂α

∂V

∂α
+ V (α)

∂2A

∂α2
)Y −1]zS1T .

The �rst term is always strictly positive, with the second also being positive, as per the

above. To analyse ∂2A
∂α2 , we examine the vector −M−1(α,1)∂M(α,1)

∂α
M−1(α,1)zS and its

derivative:

2[M−1(α,1)
∂M(α,1)

∂α
M−1(α,1)

∂M(α,1)

∂α
M−1(α,1)]zS (2)

The matrix ∂M(α,1)
∂α

is a zero row-sum matrix whose ijth entry is positive if i, j ∈ Tk for
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k = c,m and negative otherwise. Hence the term in the square brackets of (2) is such

that its ijth entry is positive if i, j ∈ Tk and negative otherwise. This then implies that

∂2δi(α)
∂α2 < 0 for i ∈ Tc and

∂2δj(α)

∂α2 > 0. It then follows that −Y −1(V (α)∂
2A

∂α2 )Y
−1zS1T is

positive, which implies that ∂F (α,δ∗)
∂α

> 0

Thus, z̄(α, δ∗) is convex in α ∈ [0, 1]. As per the initial analysis that z̄(0, δ∗(0)) =

z̄(1, δ∗(1)),we know ∃ᾱ such that G(ᾱ) = −F (ᾱ), and the two functions do not across

again for α ∈ [0, 1], completing the proof of Theorem 2.

For proof of Proposition 7, notice that even when β = 1, if α < 1, then the

equilibrium stochastic block model is such that wij(α) > wik(α) if θj = θk and i, j ∈ Ts

for s = c,m and k ∈ Tl for l ̸= s: the statement in Lemma 2 holds for all β. Hence, the

highest possible level of public opinion, z̄(1, δ∗(1)), is only achieved when the matrix β

satis�es the condition in stated in the Proposition.

Proof of Theorem 3

Recall that ∂z(α)
∂α

= −M−1(α, δ∗)∂M(α)
∂α

M−1(α, δ∗)zS, and, as A(δ∗(α))V (α)Q, the anal-

ysis in the proof of Theorem 2 implies that: (1)
∂zj(α,δ

∗)
∂α

> 0 and ∂zk(α,δ
∗)

∂α
< 0 for

all j ∈ Tc and k ∈ Tm; and (2)
∑

k∈Tm qk
∂zk(α,δ

∗)
∂α

> ∂z̄(α,δ∗)
∂α

>
∑

j∈Tc qj
∂zj(α,δ

∗)
∂α

. It

then follows that
∑

k∈Tm qk(
∂zk(α,δ

∗)
∂α

− ∂z̄(α,δ∗)
∂α

) > 0 and
∑

j∈TN qj(
∂z̄(α)
∂α

− ∂zj(α)

∂α
) =

∂
∑

j∈TN
qj |zj−z̄(α)|
∂α

> 0, which implies the result.

Proof of Theorem 4

Modifying equation (1), we write:

∂z̄(α, δ∗)

∂B̄ij

= −Y −1(A(δ∗)
∂V (α)

∂B̄ij

+
∂A(δ∗)

∂B̄ij

V (α))Y −1z̃S1T . (3)
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To analyse the �rst term of (3), we can rewrite the �rst term in this expression in terms

of wij and Mδ∗(α) - a matrix whose ijth entry is equal to the ijth entry of M(α, δ∗)

for all δ - as follows:

−Y −1A(δ∗)
∂V (α)

∂B̄ij

Y −1z̃S1T = −M−1
δ∗ (α)

∂Mδ∗(α)

∂wik

M−1
δ∗ (α)z̃

S1T .

Let luv(sk) represents the uvth component of Lsk(α) = −M−1
δ∗ (α)

∂Mδ∗ (α)

∂wsk
M−1

δ∗ (α), then:

luv(sk) = (−qkδsrus + qsδkruk)rsv − (qsδkrus − qkδsruk)rkv

where rij is the ijth entry of M−1
δ∗ (α). Note that, as stated in the preliminary section

above,
∑

v ruv = 1
q̄S

for all u ∈ T . Therefore, if zs < zt and δs < δt then
∑

u∈Tc rsu >∑
u∈Tc rtu and

∑
u∈Tm rsu <

∑
u∈Tm rsu. Noting that

∑
v luv(sk) = 0 ∀u, this then

implies that |
∑

v∈Tc luv(sk)| > |
∑

v∈Tc luv(tk)| for all u (and so |
∑

v∈Tm luv(sk)| >

|
∑

v∈Tm luv(tk)| as well).

Now, consider the case where zi > zj, δi > δj and i, j ∈ Tm. Then,
∑

k∈Tc rik(α) <∑
k∈Tc rjk(α) and

∑
k∈Tm rik(α) >

∑
k∈Tm rjk(α). As per the argument above, this im-

plies that |
∑

k∈Tc ltk(is)| > |
∑

k∈Tc ltk(js)| for all k.

We now need to consider the second term in (3). As per the proof of Theorem 2

above, this term is negative, while its derivative is positive. If δs < δt this implies that:

−Y −1∂A(δ
∗)

∂B̄sk

V (α)Y −1z̃S1T > −Y −1∂A(δ
∗)

∂B̄tk

V (α)Y −1z̃S1T ∀k.

Hence, the �rst statement in the Theorem is proven. Note also that ∂A(δ∗)
∂B̄ij

= −∂A(δ∗)
∂β̄ij

and ∂V (δ∗)
∂B̄ij

= −∂V (δ∗)
∂β̄ij

, which, given the analysis above, immediately implies the second

statement.
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Proof of Proposition 8

Let w̃0
s1 = wS

s1 − wS
s0. As M−1z̃SqT = z̄(α), then M−1 is independent of w̃0

s1 (though

it is not independent of wS
s1 or w

S
s0,

∂M−1(α)

∂wS
s1

= ∂M−1(α)

∂wS
s1

, and so ∂M−1(α)

∂w̃0
s1

= 0). Then,

M−1(α) ∂zS

∂w̃0
s1
qT = ∂z̄(α)

∂w̃0
s1
. It then follows that if ϕi > ϕj, then

∂z̄(α)

∂β̂i(S1,S0)
> ∂z̄(α)

∂β̂j(S1,S0)
.

For the second statement, Y (α, δ∗) = A(δ∗)V (α). V (α) and thus V −1(α) are sym-

metric and by Proposition 4 for θi = θj and i ∈ Tc and j ∈ Tm δi < δj. Then it must

be that
∑

k yik(α) >
∑

k yjk(α), completing the proof.
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